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Abstract

This article discusses the application of mathematical models, spe-
cifically Lanchester’s models in the context of warfare, to predict 
battle outcomes by considering factors such as the number of sol-
diers and their effectiveness. We review the use of these models for 
various historical battles and even in the context of contemporary 
conflicts, such as the Russian aggression in Ukraine but also in di-
verse areas, including animal behavior and strategy video games. 
These models provide valuable insights into battle dynamics, but 
they have limitations, particularly in accounting for the spatial ar-
rangement of armies and the variability in an army’s effectiveness 
based on morale and weapon types. 

Keywords: Lanchester’s Models, Warfare Mathematics, Battle Out-
come Prediction, Military Strategy

La guerra a través de la lente de las matemáticas

Resumen

Este artículo analiza la aplicación de modelos matemáticos, espe-
cíficamente los modelos de Lanchester en el contexto de la gue-
rra, para predecir los resultados de la batalla considerando factores 
como el número de soldados y su efectividad. Revisamos el uso 
de estos modelos para diversas batallas históricas e incluso en el 
contexto de conflictos contemporáneos, como la agresión rusa en 
Ucrania, pero también en diversos ámbitos, incluido el comporta-
miento animal y los videojuegos de estrategia. Estos modelos pro-
porcionan información valiosa sobre la dinámica de la batalla, pero 
tienen limitaciones, particularmente a la hora de tener en cuenta la 
disposición espacial de los ejércitos y la variabilidad en la efectivi-
dad de un ejército en función de la moral y los tipos de armas.

Palabras clave: modelos de Lanchester, matemáticas de guerra, 
predicción del resultado de la batalla, estrategia militar
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数学视角下的战争

摘要

本文探讨了数学模型的应用（特别是兰彻斯特模型在战争情
境中的应用），通过考量士兵数量及其有效性等因素来预测
战斗结果。我们述评了这些模型在不同历史战役中的使用，
甚至在当代冲突情境下的使用（例如俄罗斯对乌克兰的侵
略），以及在不同领域的使用，包括动物行为和策略视频游
戏。这些模型为战斗动态提供了宝贵见解，但它们也有局限
性，特别是在考虑军队空间布局以及基于士气和武器类型的
军队效能的差异性这两方面。

关键词：兰彻斯特模型，战争数学，战斗结果预测，军事战
略

In war, numbers alone provide no advantage. Sun Tzu (6th century BC - 5th 
century BC) in “The Art of War.”

To determine the outcome of a battle, military strategists have long relied 
more on mathematics than crystal balls. Since each conflict has its own character-
istics, seeking a single model for all confrontations is futile. However, it would be 
tedious to list all possible approaches. Let’s focus on the early works on the subject 
to understand their utility and limitations.

There is a long tradition between mathematics and war. Archimedes is often 
presented as the first great scientist to have used his scientific knowledge to build 
war machines. During the siege of Syracuse in 212 BC, it is said that he built giant 
parabolic mirrors to ignite enemy sails by concentrating the sun’s rays. Although 
the anecdote is certainly not true, it illustrates one of the first uses of science in 
warfare. On the other hand, the Greeks knew that war is better waged with math-
ematics as part of the train. Plato’s “Socrates” explains that the commander needs 
arithmetic and geometry for displaying his troops optimally (Republica 525b).  
While World War II is very well known (Manhattan project, Enigma code, etc.) 
World War I was also an active period for mathematicians.

Frederick William Lanchester (October 23, 1868 - March 8, 1946) was a 
polymath who became interested in the influence of modern weapons on the out-
come of conflicts as early as 1914 [4]. He considered that the method by which 
combat losses are computed is one of the most critical parts of any combat model. 
The Lanchester equations, which state that a unit’s combat losses depend on the 
size of its opponent, are widely used for this purpose. In modern warfare, each 
weapon can eliminate multiple adversaries. To model the number of deaths in a 
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battle, it’s necessary to consider not only the number of soldiers but also firepower. 
This raises questions: Is it better to increase the number of soldiers or firepower? 

What are the expected losses in a conflict? Can we estimate enemy losses? 
The first model by Lanchester (known as the linear model) is suited for ancient 
battles and has little practical significance.

The two models Lanchester (1916) conceived are called the linear law and 
the geometric law. The linear law is described as a series of one-on-one duels on 
the battlefield, most applicable to ancient warfare or area fire. In this scenario, the 
attrition ratio of the two forces is independent of the force ratio. The geometric 
law, associated with modern warfare, describes combat where multiple units of a 
force can focus their aimed fire onto single targets. In this concentrated fire model, 
the attrition that a force suffers is proportional to the number of enemies.

Lanchester’s geometric model was initially developed to simulate aerial 
combat (a major innovation during World War I) and focuses on the number of 
surviving soldiers in a battle. He also extends the theory to include heterogeneous 
force composition, naval warfare, and other battle types.

Lanchester’s geometric model was initially developed to simulate aerial 
combat (a major innovation during World War I) and focuses on the number of 
surviving soldiers in a battle. Even if it is fundamental to know the number of 
soldiers at a given time, it is crucial to consider the rate of change.  The objective 
of Lanchester’s model is to calculate the evolution of the number of soldiers over 
time and, ultimately, the number of surviving soldiers. From a mathematical per-
spective, the concept of a derivative with respect to time begins to emerge, i.e., the 
rate of disappearance of an army as a function of time. As the number of soldiers 
decreases, this derivative must be negative. Furthermore, this decrease depends on 
the effectiveness of the opposing army. In the end, if we consider two armies A and 
B, and denote A(t) and B(t) as the number of soldiers at time “t,” and α and β as the 
effectiveness of armies A and B, we obtain a system of differential equations where 
the derivative with respect to time of A(t) is the product of beta and B(t) (with a 
negative sign); similarly, for the derivative of B(t). (See image 1). 

Image 1. System of differential equation from Lanchester’s model
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Solving this system of equations is relatively straightforward. In the conven-
tional approach, A(0) and B(0) represent the initial strengths of the two armies at 
the beginning of the battle. For simplicity, let’s assume that the battle ends due to 
a lack of combatants. If camp A wins the battle at time T, then B(T) = 0, and it can 
be demonstrated that the number of survivors is: 

If camp B wins the battle at time T, A(T) = 0 and 

Before discussing the applications and limitations of the model, let’s see 
what this model teaches us. First, it’s evident that the influence of efficiency is lin-
ear, while the number of soldiers at the beginning of the conflict has a quadratic 
influence. The statement that quantity is more important than quality probably 
stems from this criterion. The Lanchester square model is a continuous model of 
time and state in practice, often regarded as a kind of mean-value model. This im-
plies that it’s better to be more than twice as numerous as to be more than twice as 
efficient. The “3:1 rule” in ground combat stipulates that an attacking force should 
have a 3-to-1 advantage over a defending force to succeed. This rule originated 
from operations research. Let note that the logic behind this model deteriorates 
as the number of operational units decreases, and it certainly collapses when the 
number of operational units is reduced to zero.

This model describes combat between two homogeneous forces using 
long-range weapons such as tanks, revolvers, and machine guns. Both fight under 
the assumption of complete tactical information. Complete tactical information 
means that an arbitrary operational unit is always capable of detecting at least 
one of the many hostile operational units because it can kill. In addition, it is as-
sumed that all the operational units on each side can share information fully and 
coordinate their firepower among the hostile operational units. In fact, firepower 
is the only limiting factor. This assumption may be completely unrealistic, as it is 
difficult to identify many modern combat situations where the assumption is re-
spected by both sides. For example, very few army operations are carried out with 
complete tactical information on both sides. It also doesn’t account for the spatial 
arrangement of armies, and the effectiveness of an army varies based on morale 
and types of weapons. Furthermore, the deterministic nature of the model means 
that the same conditions will always yield the same result. Current models prefer 
simulations that provide probabilities of victory. 

Economic and military growth require investment. The more you invest, 
the faster you grow. The more the state invests in the military, the less it can in-
vest in the economy. Military expenditure has the opportunity cost of reducing 
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economic expenditure. Based on these assumptions, some authors proposed to 
extend Lanchester model with the growth of a nation’s resources as a function of 
the amount of its resources invested in economic growth as well as the amount it 
invests in military preparations for combat. 

In Lanchester’s model both sides apply the same type of tactics and firing 
techniques; the battles are symmetric. Asymmetric engagements occur when the 
two sides apply different tactics. One such asymmetric combat situation occurs 
when regular forces of a state fight guerrillas or insurgents who apply irregular 
warfare tactics. A different manifestation of asymmetry in Lanchester models is 
when the two sides employ profoundly different tactics. Consider an aimed-fire 
situation where a homogeneous Blue force is engaged in battle with a heteroge-
neous Red force comprising n units that are different in terms of fire-effectiveness 
and vulnerability. Lin and MacKay showed that the optimal tactic for Blue is such 
that Blue should not spread out its effort but rather concentrate all its fire on one 
Red adversary at a time. At any given time, Blue should concentrate its fire on the 
adversary for which the “product” of its vulnerability and threat is the highest.

The asymmetric models apply to irregular warfare where well-organized, 
military forces of the state confront low-signature guerrilla fighters. These models 
focus on the asymmetry in information and its impact on battlefield outcome. 
Another crucial component in irregular-warfare scenarios is the civilian popula-
tion who, on the one hand, are subject to violent actions by the guerrillas, and on 
the other hand, may be a source of support and provider of hiding places for the 
guerrillas’ fighters. This question was studied by Kress in [9].

Lanchester’s equations essentially model the attrition between two oppos-
ing forces. They capture a duel, force-on-force, situation. However, recent, as well 
as some historical, conflicts involve more than two opposing forces. The Bosnian 
Civil War (Croatia, Bosnia Herzegovina, Serbia, NATO), the Iraq Civil War (Coa-
lition Forces, Sunni Militia, Shia Militia), and most recently, the war in Syria (As-
sad Regime Forces, Free Syrian Army, Hezbollah, Kurds, Russia, Turkey) are just 
a few examples of such multilateral violent conflicts. Two recent papers extend 
the classical Lanchester theory to the case where the attritional conflict comprises 
more than two players. It is important to note a profound difference between two- 
and multiple-player Lanchester models. In a two-player (force-on-force) conflict, 
the Lanchester models are purely descriptive; they simply capture the attrition on 
both sides as a function of the initial strengths and the attrition rates of the two 
players: Blue and Red. No decision is required, by either player, during the engage-
ment. However, in a multiple-player conflict, each player has to decide how to al-
locate its strength among the other adversaries so as to maximize its own chances 
to be the victor. This decision, common to all other players, leads to a prescriptive 
model where each one of n players (n > 2) has to dynamically allocate its existing 
strength among its n – 1 adversaries. 



International Journal on Criminology

120

Kress et al. [8] studied this question as a differential game where each player 
wishes to maximize its own surviving force minus that of its enemies. The outcome 
of the analysis is surprising: either a player is strong enough to win over the other 
players combined in a coalition against itself, or all players are locked in a stale-
mate that leads to their mutual demise. In the case of three players, this conclusion 
stands in contrast to sequential-engagement scenarios in which the weakest player 
can achieve an advantage.

Lastly, for those familiar with differential equation systems, they might have 
recognized in Lanchester’s model a simplified version of the Lotka-Volterra equa-
tions. This model, called the predator-prey model, deals with the interaction be-
tween two species, one being a predator and the other its prey. It was introduced a 
decade after Lanchester’s work. 

In Lotka-Voltera’s model, prey are assumed to have an unlimited source of 
food and to reproduce exponentially if they are not subject to predation. The rate 
of predation on prey is assumed to be proportional to the frequency of encoun-
ters between predators and prey. The variation in the number of preys is given 
by its own growth minus the predation rate applied to it. Similarly, the variation 
in the predator population is given by the growth of this population, minus the 
number of natural deaths. Predators thrive when prey is plentiful, but eventually 
exhaust their resources and decline. When the predator population has declined 
sufficiently, the prey that has benefited from the respite reproduce and their pop-
ulation increases again. This dynamic continues in a cycle of growth and decline. 
This model was used for guerrilla [10]. The growth term reflects guerrilla recruit-
ment, which depends on the interaction between guerrilla forces and the popu-
lation they control while predation reflects losses of guerrillas by either death or 
capture or defection to the regulars. At the same time, the regular recruitment 
rate is the rate of increase of the regulars if there were no guerrillas and the pre-
dation is losses to guerrillas, depending on the interaction of the guerrillas with 
the regulars.

Despite all its limitations, this model has been successfully applied to vari-
ous situations [2]. Lanchester’s laws have been used to explain the characteristics 
of battles among a variety of animals that fight in groups, including termites, ants, 
birds, and chimpanzees [3]. Among the proposed implications, one can mention 
investment in offspring, decision rules on when to engage in combat, and differ-
ences in size between native and non-native species. Today, it is also widely used 
in strategy video games whenever there are battles, such as in Age of Empires, for 
instance, or to model the outcome of a game like StarCraft [6].

Lanchester’s model has been applied to various historical battles, including 
the Battle of Trafalgar, the Battle of Kursk in 1943 involving German and Soviet 
tanks, the Battle of Berlin, the Battle of the Bulge during World War II, and the 
naval conflict in the Atlantic during which German U-Boats inflicted damage on 
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Allied convoys. In a 1954 article, Engel applied Lanchester’s model to the Battle of 
Iwo Jima. 

The battle was towards the end of the war and the Pacific Theater campaign. 
The data in this paper covers the force attrition from the 19th of February through 
the 26th of March 1945. Japan was on the defensive at the strategic as well as the 
operational levels. The island was used by the Japanese military throughout the 
war as a waypoint and relay for communications, aircraft, and supplies between 
the Japan mainland and the rest of the Southwest Pacific.

The source of the data is the daily casualty recordings from the historical 
accounts and official records from the battle of Iwo Jima. This information was 
compiled during the operation by the U.S. Marine Corps Historical Division. The 
American army would lose around 26,000 soldiers (including 7,000 deaths). Such 
detailed casualty data for the Japanese forces is not available, however, and the 
only usable data regarding Japanese force size over time is that there were 21,500 
at the start of the battle (D+0) and approximately zero at the end of the recorded 
fighting (D+35). D+28 is the official end of the battle as declared by the operation-
al U.S. Marine command at the time; and, although there were some residual Jap-
anese forces deep within buried tunnels and bunkers that were exposed over the 
following days, weeks, months, and even years, they were relatively low in number 
and are generally not considered for the analysis of the data.

This battle aligns with many of the assumptions of Lanchester’s model since 
the island was isolated, and the Japanese defenders were nearly all killed. The is-
land was attacked by approximately 73,000 American soldiers (54,000 on the first 
day, 6,000 on the second, and 13,000 on the sixth day). It’s relatively easy to recon-
struct the dynamics of the model and estimate the parameters. The Japanese effi-
ciency was 0.0577, while the American efficiency was 0.0106. Therefore, there was 
an efficiency ratio of 5.4 between the two armies. It’s also possible to reconstruct 
the dynamics of the battle and explore what would have happened with different 
scenarios. For example, if the Americans hadn’t sent reinforcements on the second 
and sixth days, there would likely have been an additional 7,000 casualties, and 
the battle would have lasted 66 days instead of 36. That’s a one-month difference. 
Conversely, if all troops had been landed on the first day, it would have saved 2,000 
lives (and one day of battle). Finally, it would have taken at least 31,300 Japanese 
soldiers to withstand the American assault.

Today the current European military landscape is heavily influenced by 
the Russian aggression in Ukraine, and we can already see the application of 
Lanchester’s model to this conflict [5]. The balance of power in the War in Ukraine 
is very similar to that in the American Civil War. In 2022 Russia had about 4:1 
advantage in population. Based on these numbers, Ukraine has about as much 
chance of winning the conflict as the Confederacy did. But this prediction comes 
from a very simple model, and reality can deviate from it due to several factors 
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(such as morale, munition production, skills, logistics, etc.). Depending on how 
important these factors are, the prediction could be substantially different. In oth-
er words, we have alternative predictions resulting from different assumptions—
finding out which of these alternatives matches the data best is what the scientific 
method is about. Math gives a model, but life can be more complicated.

Although addressing the challenges posed by heavy artillery in terms of 
target location and trajectory calculations demanded expertise in mathematics, 
World War I revealed numerous technological and military advancements that 
also hinged on meticulous mathematical analyses. Whether it was keeping an air-
plane airborne or facilitating its descent, various mathematical problems needed 
solutions. Additionally, the advancement and refinement of technologies like so-
nar or wireless telegraphy, along with the practical military application of cartog-
raphy and meteorology on a daily basis, demanded mathematical skills that, while 
not necessarily groundbreaking, were nonetheless scarce among the enlisted per-
sonnel. On the other hand, human interactions supply many phenomena, which 
can be modelled and analyzed with applied mathematics. Lanchester’s model is 
one of the most famous models for the role of the military strategy (and the linked 
decision problems) during a conflict between two or more armies. Even if hard-
ware of weapons systems is fundamental, the behavioral aspects of combat are also 
very important and historical data offer rich opportunities for studying the effects 
of tactics. 
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